
A
c

K
4

a

A
R
R
A
A

K
T
Q
r
C
P

1

i
d
n
H
(
p
a
m
i
P
C
a
H
i
(

C
a

0
d

International Journal of Pharmaceutics 388 (2010) 13–23

Contents lists available at ScienceDirect

International Journal of Pharmaceutics

journa l homepage: www.e lsev ier .com/ locate / i jpharm

skin permeability model of insulin in the presence of
hemical penetration enhancer

.M. Yerramsetty, B.J. Neely, S.V. Madihally, K.A.M. Gasem ∗

23 Engineering North, School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States

r t i c l e i n f o

rticle history:
eceived 2 October 2009
eceived in revised form 9 December 2009
ccepted 10 December 2009
vailable online 21 December 2009

eywords:
ransdermal

a b s t r a c t

Enhancing transdermal delivery of insulin using chemical penetration enhancers (CPEs) has several
advantages over other non-traditional methods; however, lack of suitable predictive models, make
experimentation the only alternative for discovering new CPEs. To address this limitation, a quantita-
tive structure–property relationship (QSPR) model was developed, for predicting insulin permeation in
the presence of CPEs. A virtual design algorithm that incorporates QSPR models for predicting CPE prop-
erties was used to identify 48 potential CPEs. Permeation experiments using Franz diffusion cells and
resistance experiments were performed to quantify the effect of CPEs on insulin permeability and skin
uantitative structure–property
elationship
hemical penetration enhancer
ermeability

structure, respectively. Of the 48 CPEs, 35 were used for training and 13 were used for validation. In
addition, 12 CPEs reported in literature were also included in the validation set. Differential evolution
(DE) was coupled with artificial neural networks (ANNs) to develop the non-linear QSPR models. The six-
descriptor model had a 16% absolute average deviation (%AAD) in the training set and 4 misclassifications
in the validation set. Five of the six descriptors were found to be statistically significant after sensitivity
analyses. The results suggest, molecules with low dipoles that are capable of forming intermolecular
bonds with skin lipid bi-layers show promise as effective insulin-specific CPEs.
. Introduction

Non-traditional methods of insulin delivery like insulin pumps,
nsulin inhalers and insulin pens have obvious advantages over tra-
itional methods of delivery (Patni et al., 2006). Another promising
on-traditional alternative is the delivery of insulin through skin.
owever, human skin provides a very efficient transport barrier

Monteiro-Riviere, 1991; Monteiro-Riviere, 1996) to delivery of
rotein molecules like insulin, due to their large size (>3000 Da)
nd weakly hydrophobic nature. Several physical and chemical
ethods have been developed to improve the permeation of

nsulin through human skin (Scheuplein and Blank, 1973; Pillai and
anchagnula, 2003a; Rastogi and Singh, 2003; Pillai et al., 2004b).
urrently, the most efficient method in enhancing insulin perme-
tion through skin is iontophoresis (Pillai and Panchagnula, 2003a).
owever, the economic viability and ease of applicability of chem-

cal approaches, such as the use of chemical penetration enhancers

CPEs), makes them an attractive alternative.

Despite the advantages, very few studies involving the use of
PEs for transdermal insulin delivery exist in the literature (Rastogi
nd Singh, 2003; Pillai et al., 2004b). Further, in these limited stud-
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E-mail address: gasem@okstate.edu (K.A.M. Gasem).

378-5173/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2009.12.028
© 2009 Elsevier B.V. All rights reserved.

ies, CPEs involving either fatty acids or fatty alcohols are employed
in tandem with iontophoresis. However, when compared to the
physical methods of enhancement like iontophoresis, these ‘tradi-
tional’ CPEs have not been effective in enhancing the permeation
of large hydrophilic molecules like insulin. Therefore, a need exists
to develop new CPEs that can increase the dermal absorption of
insulin to therapeutic levels.

The most rigorous means of identifying new CPEs is by esti-
mating experimentally the drug permeability in presence of the
CPE; however, practical limitations on time and resources make
this method unattractive. Therefore, the scientific community is
relying increasingly upon predictive models for estimating the
drug permeabilities in the presence of CPEs. Although mechanistic
models have been employed in the past to estimate drug permeabil-
ities through skin (Scheuplein and Blank, 1971, 1973; Stoughton,
1989), they involve many assumptions, and parameters that can-
not be measured easily. In addition, these models do not allow
for uncertainties in the experimental data, and as a result, lead to
large predictive errors. Semi-empirical modeling approaches like
quantitative structure–property relationships (QSPRs) can account

for data uncertainties (by employing weighted regression or sim-
ilar methods) and usually lead to better predictive models. Also,
QSPRs are used to model molecular properties based on structural
features, which can provide physical insight to the modeled phe-
nomenon.

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:gasem@okstate.edu
dx.doi.org/10.1016/j.ijpharm.2009.12.028
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Most of the available skin permeation QSPR models (Potts and
uy, 1992; Guy and Potts, 1993; Barratt, 1995) in the literature are
eveloped for predicting the passive permeability of chemicals, i.e.,
he unaided transport of molecules through the skin. However, the
ermeation of a therapeutic drug in the presence of other chemicals
an differ markedly from passive permeation, and in CPE enhanced
ransdermal drug delivery, the most important property of interest
or modeling purposes is the permeability of the drug in the pres-
nce of CPEs. Despite the importance of such models, molecular
odeling and QSPR studies in the past did not focus on this subject,

ossibly due to the variations in the structure–activity relationships
etween different pairs of drugs and enhancers (Iyer et al., 2007).
few recent studies (Li et al., 2003; Ghafourian et al., 2004; Iyer

t al., 2007); however, have attempted to model the permeation of
ifferent types of drugs in the presence of CPEs.

Like other empirical methods, QSPR models are based on the
vailability and quality of the data used for model development.

review of the available literature for the pertinent data indi-
ates that insulin has been predominantly delivered through the
kin using physical methods like iontophoresis (Rao and Misra,
994; Pillai et al., 2003a,b; Pillai and Panchagnula, 2003a,b; Pillai
t al., 2004a,b) and sonophoresis (Mitragotri et al., 1996), with very
ew reported studies on the use of CPEs. Pillai et al. and Choi et
l. (Choi et al., 1999; Pillai and Panchagnula, 2003a,b; Pillai et al.,
004b) have studied the effect of solvents like ethanol, propylene
lycol, ethyl acetate and isopropyl myristate on insulin perme-
tion. However, these solvents were used for pre-treatment of
he skin before insulin application. A similar study on the effect
f CPE pre-treatment on insulin permeation was completed by
hoi et al. (1999). Some common enhancers like Azone, oleic acid
nd poloxamer have been investigated by Hao et al. (1995), but
hese enhancers have been used only after treating the skin with
ontophoresis. Priborsky et al. (1988) studied the effects of CPEs

ithout using any physical methods, but the number of CPEs inves-
igated was limited to three. Similar studies on a handful of CPEs
ave been carried out by others (Rastogi and Singh, 2003; Sintov
nd Wormser, 2007). This literature review suggests that there is
serious shortage of insulin permeability data in the presence of
ifferent CPE classes. In the current work, experiments based on
ell-established literature procedures were carried out to insure

ufficient data exist for modeling analysis. The detailed experimen-
al procedures can be found elsewhere.

A total of 48 CPEs with different functional groups were investi-
ated experimentally in the current work, for their effect on insulin
ermeation. These 48 CPEs were identified with our virtual design
lgorithm, which combines genetic algorithms (GAs) and quantita-
ive structure–property relationship (QSPR) models for important
PE properties. Details concerning the algorithms and models can
e found elsewhere (Godavarthy et al., 2009).

Most literature QSPR models for skin permeation are based
n a few, select descriptors that have been established by many
esearchers in the field. As a result, the number of important
escriptors in the field of transdermal delivery is low when com-
ared to other studies, such as drug delivery across the blood–brain
arrier (Neumann et al., 2006). Through this work, we attempt to

dentify additional descriptors that could be important for trans-
ermal delivery. However descriptor pruning is a complex task
hen developing non-linear QSPR models. Even after removing

he highly correlated descriptors, most QSPR data sets retain large
umbers of descriptors. Many of these descriptors are redundant or

nsignificant, and the sheer number can cause difficulties in provid-

ng a mechanistic interpretation of the property of interest. Many

ethods exist for pruning large descriptors sets to smaller sets
ore amenable to development of practical and useful models. Sen-

itivity analysis (Turner et al., 2004) is a commonly used technique,
n which the sensitivity of the output to random changes in the
l of Pharmaceutics 388 (2010) 13–23

descriptor values is analyzed. This technique although simple, does
not account for descriptor interrelationships. For example, a group
of two or more descriptors can provide a significant effect while
the same descriptors examined singly are insignificant. Multi-linear
regression techniques are also employed commonly (Kang et al.,
2007); these techniques are better than sensitivity analysis in their
ability to account for the linear relationships between a group of
descriptors and the output, but they fail to account for non-linear
relationships. Attempts have been made to include genetic algo-
rithms (GA) to search for the best descriptors without imposing
any constraints on the types (linear or non-linear) of input–output
relationships between the descriptors and the property of interest.
However, these algorithms are limited to only a small number of
initial descriptors (Agatonovic-Kustrin et al., 2001). In the current
work, an evolutionary algorithm called differential evolution (DE)
was used for descriptor pruning. This is a two-level algorithm; at
the top level, a DE framework searches for the set of best descrip-
tors and at the bottom level neural networks are used to build
non-linear models based on the selected descriptors. In addition
to the best descriptors, the DE framework has been modified to
simultaneously search for the best neural network architecture.

2. Methods

2.1. Experimental methodology

A brief description of the experimental procedure is pro-
vided here. For a detailed description, the readers are referred to
Rachakonda et al. (2008).

2.1.1. Resistance measurements
Porcine abdominal skin was placed between the receiver and

donor plates of a resistance chamber built in-house, with the stra-
tum corneum facing the donor wells, and the two plates were
clamped together tightly. The receiver chambers were filled com-
pletely with phosphate buffered saline (PBS, pH – 7.4, phosphate
and sodium chloride concentrations of 0.001 and 0.137 M, respec-
tively). The resistance of the skin was measured using a common
electrode placed beneath the receiver plate and the other placed
sequentially into each donor well. All CPEs were tested at a con-
centration of 5% (w/v) in 40:60 PBS and ethanol solution with the
receiver chambers maintained at 37 ± 1 ◦C. Resistance measure-
ments were taken hourly for a period as long as 6 h.

The resistance reduction factor (RF) was calculated as the ratio
of the initial resistance (R) of the skin at time 0 to the resistance at
time t, as given by:

RF = R0

Rt
(1)

2.1.2. Permeability measurements
All permeation experiments were carried out using Franz diffu-

sion cells (Permegear Inc., Riegelsville, PA, USA). Porcine abdominal
skin was placed between the receiver and donor chambers of the
Franz cells. Full thickness porcine skin as the model membrane for
insulin permeation has not appeared in the literature; however,
Rastogi and Singh (2005) have studied the effect of some fatty acids
on the permeation of Lispro through porcine epidermis with deter-
mined Kp values for the control and oleic acid of 0.0002 and 0.0025,
respectively. These values are of the same magnitude as those Kp

values calculated in this work, which are 0.0007 and 0.0038 for the

control and oleic acid, respectively. Since the majority of the resis-
tance to the permeation of hydrophilic drugs lies in the stratum
corneum layer of the skin, we believe that employing full thickness
skin for permeation studies should lead to no disadvantages when
compared to studies using just the epidermis.
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Then, 1.0 mL solutions of 40:60 Lispro (an insulin analog) and
thanol (containing approximately 40 IU of Lispro), and 5% (w/v)
PE were placed in the donor chambers. Samples of 0.2 mL were
ithdrawn from the receiver chamber at different time intervals (3,

, 12, 18, 24, 36 and 48 h), and insulin concentration was analyzed
y high-performance liquid chromatography (HPLC). The follow-

ng steady-state equation was used to calculate permeability of the
kin:

mount of drug permeated = AmC0Pt (2)

here Am is the exposure area of the skin sample (0.64 cm2), C0
s the initial concentration in the donor chamber in mM, P is the
ermeability of the membrane and t is time in hours. The per-
eability is given in terms of the diffusion coefficient (Dm), the

artition coefficient (Km), and the thickness of the skin sample (L):

= DmKm

L
(3)

In this study, the amount of drug permeated was calculated as
he total amount of drug permeated through skin during the time
eriod of 48 h and the amounts sampled from the receiver chamber
uring this period.

.2. QSPR methodology

The development of a QSPR model involves the following series
f steps: (a) data set generation, (b) descriptor calculation, (c)
escriptor reduction, (d) model training and (e) model validation.

.2.1. Data set generation
Insulin permeability data in the presence of 48 CPEs were gen-

rated using the experimental procedure discussed in Section 2.1.
data set containing 35 CPEs was used for training the model. The

xperimental permeability (Kp) values in this data set range from
.5 to 7.6 cm/h. Another data set of 25 CPEs was used for valida-
ion. This included 12 CPEs that were reported in the literature to
e insulin enhancers; eight CPEs that did not significantly reduce
he skin resistance when tested in our lab using the resistance pro-
edure described previously in Section 2.1 (permeability values for
hese CPEs were not measured and therefore are not reported); and
ve CPEs that were tested in our lab for permeability and were not

ncluded in the training set.

.2.2. Descriptor calculation
Descriptor calculation requires a series of steps common to

ll QSPR models. ChemBioDraw Ultra 11.0 (CambridgeSoft, 2008)
as used to generate the two dimensional (2-D) structures for the
PEs in the data set. These 2-D structures were then used to gen-
rate three dimensional (3-D) structures. The molecular energy
as minimized using Chem3D Pro 11.0 (CambridgeSoft, 2008) to
nd the corresponding optimal 3-D conformation. The 3-D struc-
ures were further optimized using AMPAC 6.0 (Semichem, 1998a),
nd the final optimized structures were provided to CODESSA PRO
Semichem, 1998b) for descriptor calculation. CODESSA PRO has
he capability to generate over 1200 descriptors. However, due to
tructural complexity, this number may be lower, and a missing
escriptor was assigned a zero.

.2.3. Descriptor reduction and model training
A non-linear reduction and training strategy was employed in

he current work to discover simultaneously the best descriptor set

nd the best neural network architecture based on these descrip-
ors. An evolutionary algorithm, differential evolution (DE), was
sed to search for the best descriptors and network architecture,
nd artificial neural networks (ANNs) were used to build the non-
inear models based on these descriptors. Briefly, DE is a stochastic
l of Pharmaceutics 388 (2010) 13–23 15

optimization algorithm that finds the global extremes (minimum
or maximum) of a function. The method begins with an initial
random population of individuals (or independent variables), and
through mutation and crossover operations over a number of gen-
erations, transforms this initial population into a population that is,
on average, much closer to the global minimum (or maximum) of
the dependent variable. For a detailed overview of this process, see
the description provided by Price et al. (2005). Two essential fea-
tures of any evolutionary algorithm are (a) genetic representation
and (b) the objective function, which are described below.

(a) Genetic representation: A good genetic representation of the
solution domain is an important step in developing an effi-
cient DE algorithm. In the current work, the solution space is
comprised of all possible molecular descriptors and all possi-
ble two hidden-layered neural network architectures. Since a
two hidden-layer network is capable of reasonable approxi-
mation of any non-linear function, the maximum number of
hidden layers was limited to two (Hornik et al., 1989). Guide-
lines exist in the literature for choosing the maximum number
of descriptors for small data sets, and these were applied during
QSPR model development (Tropsha et al., 2003). These guide-
lines limit the maximum number of descriptors in the model
to 1/5th the number of data points in the training set. Since
35 training points were available, the number of descriptors
used in the modeling effort was limited to six. Therefore, six
descriptors form an individual in the solution space and each
individual in the population is characterized by this set of six
descriptors. As in most evolutionary algorithms, arrays are the
most suitable form of representing an individual in the solu-
tion space. In the present work, a nine-element integer array,
Di, was used to represent the ith individual in the initial popula-
tion. Each of the first six elements of the array stores an integer
that represents a descriptor from the set of all possible descrip-
tors. Therefore, Di,j for j = 1–6 represents the jth element (or
descriptor) of the ith individual in the initial population. Di,
Mi, and Ti, are used to distinguish between the individuals in
the initial population, mutated population and the trial popu-
lation, respectively. In addition to the descriptors, the algorithm
also optimizes the network architecture. Therefore, the genetic
representation includes elements that denote the number of
hidden layers (1 or 2) and also the number of neurons in each
of these hidden layers. Employing an analogous representation
scheme as used for the descriptors, the seventh element in the
arrays Di, Mi, and Ti, was used to represent the number of hid-
den layers in the network. If this element was set to a value of
one, then the corresponding network had a single hidden layer,
and if the value of the element was zero, then the network con-
tained two hidden layers. Further, the last two elements of the
arrays were used to represent the number of neurons in the one
or two hidden-layer architectures, respectively. The maximum
number of neurons in either hidden layer was set at 25 (denoted
as max neurons in the subsequent discussion).

(b) The objective function: Another major aspect of a DE algorithm is
choice of a suitable objective function. In this work, the percent
average absolute deviation (%AAD) between the experimental
and the predicted Kp values was chosen as the objective func-
tion. The algorithm searches for the set of descriptors and the
network architecture that result in a neural network with the
least %AAD.
If DE is considered the searching mechanism (or the descriptor
reduction mechanism) of the algorithm, artificial neural networks
(ANNs) are the non-linear optimization tools of the algorithm.
In general ANNs are used to map complex non-linear relations
between inputs (or the independent variables) and the outputs
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Fig. 1. Flowchart for the diff

the dependent variables). In this work, a feed-forward neural net-
ork with six neurons in the input layer and one neuron in the

utput layer was used to model the relationships between the six
escriptors and the output Kp. The number of neurons in the hidden

ayers was set based on the last two elements of the representation
rrays, Di and Ti. Bayesian regularization was used as the optimiza-
ion algorithm, because of its advantages for small data sets over
ther training methods like early stopping (Mathworks, 2005). In
ddition to limiting the maximum number of neurons in each hid-
en layer to less than 25, another constraint was imposed on the
umber of neurons in the hidden layers by maintaining a degree of

reedom ratio of at least two. The target values for the network were
he logarithmic transformations of the experimental Kp values. In
ddition, all inputs and target values were normalized to have zero
ean and a standard deviation of one. These transformations avoid

ny bias in the model due to extremely low or high target or input
alues. A flowchart for the complete algorithm is provided in Fig. 1.

.2.4. Model validation
As discussed previously, 25 CPEs were used to validate the

odel, which consisted of the following: (a) 12 CPEs reported in the
iterature to be insulin enhancers (literature CPEs), (b) eight CPEs
hat did not reduce significantly the skin resistance when tested in
ur lab using the resistance procedure described previously (resis-
ance CPEs), and five CPEs whose Kp values were measured in our
ab, but were excluded from the training data (excluded CPEs).
ince, the experimental conditions used for the 12 literature CPEs
ere different from those used in the current study, comparisons

etween the experimental and predicted values must be made
arefully. The same holds true for the 13 resistance CPEs, because
f the poor correlation between the experimentally calculated Kp

nd RF values measured in our lab. In spite of these differences, we

xpect our model to have the capability of distinguishing effective
PEs from non-effective CPEs. From our experience with a large
umber of CPEs on insulin permeation, we suggest that any CPE
hat leads to at least a threefold increase in insulin permeability
ver that of the control value can be assumed safely to be an effec-
al evolution algorithm used.

tive CPE. Therefore, the predictions for the twelve literature CPEs
must be at least 2.0 cm/h, which is three times the control value
measured in our lab, and those for the eight resistance CPEs must
be lower than this value.

2.3. Statistical analysis

All experiments were performed a minimum of three times, and
single factor one-way analysis of variance (ANOVA) was performed
with a 95% confidence interval on the drug permeability data. This
was done to determine if the differences among these data at dif-
ferent experimental conditions are greater than the errors due to
random effects. A p-value less than 0.05 indicates a significant dif-
ference between the two groups of data.

2.4. Sensitivity analysis

Sensitivity analysis of the final neural network model was per-
formed using four different methods.

2.4.1. Neural interpretation diagram (NID)
A diagram representing the neural network structure, along

with the weights between the different neurons can be used to
qualitatively interpret the relationships between the output vari-
able and the various input variables. Using this approach, the
connections between the neurons will be represented by lines
whose thickness depends upon the magnitude of the weights
between them. Also, to differentiate between the direction of con-
tribution of the input variables to the output of a neuron, grey lines
and black lines will be used for negatively contributing and posi-

tively contributing inputs, respectively. A NID therefore, provides
qualitative information about the magnitude and the direction of
the effect of each input on the output. For a detailed discussion on
NIDs and their interpretation, the readers are referred to Olden and
Jackson (2002) and Aoki and Komatsu (1997).
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Table 1
The final model and statistical parameters.

Neural network architecture Degrees of freedom SSEa %AADb RMSEc (R2)d

Model 6-2-1 2.33 20.86 15.88 0.77 0.86
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a SSE is the sum squared error.
b AAD is the average absolute deviation.
c RMSE is the root mean squared error of the predictions.
d (R2) is the regression coefficient between the experimental and predicted value

.4.2. Garson’s algorithm
This algorithm was proposed by Garson (1991) to evaluate

uantitatively the relative importance of each input of a neural net-
ork towards the output. In this algorithm, the magnitudes of the
eights between each input and hidden neuron are used to calcu-

ate the relative importance of the inputs. However, the directions
f the effects of the input variables cannot be deduced using this
lgorithm. A detailed discussion on the exact methodology can be
ound elsewhere (Garson, 1991; Olden and Jackson, 2002).

.4.3. Randomized connection weight approach
A randomized connection weight approach was proposed by

lden and Jackson (2002) to eliminate null-connection weights
rom the network that do not differ significantly from random
alues. In brief, the procedure involved randomly generating the
utput values and constructing neural networks for estimating

hese random output responses using the same input values that
ere used to build the optimal final network. All the individual
eights were recorded and the connection weights and the overall

onnection weights for each input were calculated. These weights
or each input were calculated in the following manner:

able 2
he experimental and predicted permeability (Kp) values for all 35 CPEs. The percentage

CPE Predicted Kp (10−3, cm/h)

Octanoic acid 4.56
Decanoic acid 4.64
Oleic acid 3.97
Lauric acid 4.94
Menthone 4.18
4-Octanone 3.09
Pulegone 1.56
Cycloundecanone 5.54
Cis-4-hexen-1-ol 2.34
Nonanol 3.74
Decanol 3.67
Octanal 4.40
N,N-dimethylisopropylamine 2.64
Octylamine 3.31
2,4,6-Collidine 1.06
1-Dodecyl-2-pyrrolidinone 1.25
Cetyltrimethylammonium bromide 2.19
2-Chlorotoluene 5.72
Dimethyldisulfide 4.64
2-Sec-butylphenol 4.69
3-Methyl-2-oxazolidinone 0.49
Nonane 1.01
2-Methyl butane 0.52
Acetophenone 0.87
1-Bromobutane 6.52
1-Bromohexadecane 2.35
2-Heptanone 2.26
5-Methyl-2-hexanone 2.00
Benzylbromide 6.62
Ethyl-2-methylpentanoate 3.17
Hexachloro-1,3-butadiene 2.81
Hexanal 1.97
Methylcaproate 4.06
Valeraldehyde 1.17
1-Methyl-2-pyrrolidone 0.57
• The products of the weights between the particular input and a
hidden neuron in the first hidden layer and the weights between
this hidden neuron in the first layer and another hidden neuron in
the second hidden layer (or output layer if a second hidden layer
does not exist) and so on for all the hidden layers, was evaluated.
This is called the connection weight of the input.

• The sum of these products for each hidden neuron-input connec-
tion is called the overall connection weight for each input.

The above procedure was carried out 999 times and the pro-
portion of the connection weights (including the original optimal
network) which were larger in magnitude than the correspond-
ing connection weights, and the overall connection weights of the
optimal network were recorded. A weight is considered significant
if this proportion is lower than 0.05 (for a confidence level of 95%)
and insignificant otherwise.

Using this approach, the NID for the optimal network can be sim-

plified markedly by eliminating the insignificant weights. Also, by
using the connection weight approach, the direction of the effect of
each input toward the output can be known. If the overall connec-
tion weight of an input is positive, then the direction of its effect is
also positive and if the overall connection weight is negative, then

deviations between the experimental and predicted values are also shown.

Experimental Kp ± standard deviation (10−3, cm/h) Deviations (%)

4.9 ± 0.8 6.9
4.7 ± 1.4 1.4
3.8 ± 0.6 −4.5
6.1 ± 2.2 19.0
2.4 ± 0.7 −74.2
4.1 ± 1.0 24.6
1.7 ± 0.3 8.4

5 ± 0.4 −10.8
2.4 ± 0.5 2.5
3.7 ± 0.5 −1.0
4.6 ± 0.3 20.1

5 ± 0.6 12.1
2.8 ± 0.9 5.7
3.9 ± 1.3 15.2
1.3 ± 0.1 18.7
1.1 ± 0.1 −14.0
2.4 ± 0.3 8.6

8 ± 1.5 28.5
5.8 ± 0.6 20.0
5.6 ± 0.8 16.2
0.5 ± 0.1 1.3
0.8 ± 0.1 −25.9
0.5 ± 0.1 −4.9
0.9 ± 0.1 3.4
7.6 ± 1.8 14.2
2.1 ± 0.9 −11.9
1.6 ± 0.6 −41.0
1.4 ± 0.2 −43.0
4.8 ± 1.6 -37.9

3 ± 0.8 −5.7
2.3 ± 0.5 −22.2
2.3 ± 0.1 14.6

4 ± 0.5 −1.4
1.2 ± 0.2 2.1
0.5 ± 0.1 −13.9
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ig. 2. Comparison of the experimental and the predicted permeability (Kp) values
or insulin in the presence of various CPEs.

he direction of its effect is negative. This is advantageous over Gar-
on’s algorithm, which does not reveal the directions of the effects
f the inputs on the output.

.4.4. Leave one descriptor out analysis
The relative importance of each descriptor was analyzed

y leaving that descriptor out of the model and building a
ew neural network with the remaining five descriptors. The
AAD of the resulting network, along with the number of mis-
lassifications in the validation set was recorded. A descriptor
s considered important, if the network built after exclud-
ng this descriptor has a high %AAD and a greater number
f misclassifications when compared to the original optimal
odel.

. Results

.1. Training

A neural network with one hidden layer was found to result in
he least %AAD. Table 1 summarizes the statistical results for this
etwork. The predicted and experimental Kp values and the percent
eviations for the predicted values for the 35 CPEs used for train-

ng are tabulated in Table 2. A comparison of the experimental and
redicted Kp values is shown in Fig. 2. Fig. 3 provides a graphical
epresentation of the deviations between the predicted and experi-
ental Kp values along with the uncertainties associated with each

xperimental datum. Fig. 4 is a pie-chart for percent uncertainties

n the experimental Kp values and Fig. 5 presents a pie-chart detail-
ng the ranges of percent deviations between the predicted and
xperimental Kp values.

ig. 3. Plot of percentage deviations between predicted and experimental perme-
bility (Kp) values for insulin in the presence of various CPEs. The error bars indicate
tandard deviations for experimental Kp measurements.
Fig. 4. Range of percentage uncertainties observed in the experimental permeability
(Kp) data.

3.2. Validation

The predictions for the 25 CPEs in the validation set are pro-
vided in Table 3. For the 12 CPEs in the literature set, the predicted
Kp values were all greater than 4.0 with dimethyl acetamide and
limonene being the two exceptions. For the eight CPEs in the resis-
tance set, the predicted Kp values were considerably lower than 2.0
with 1,2-dichloropropane and azelaic acid being the two excep-
tions. For the five CPEs in the excluded set, the maximum absolute
deviation observed was 32% in the case of 4-hydroxybenzaldehyde.
The % AAD for the 5 CPEs in the excluded set was 20%.

3.3. Sensitivity analysis

Fig. 6 presents the NID for the original optimal network. From
this figure, it is clear that the dominant connection weight between
the sixth input (total dipole of the molecule) and hidden neuron B
is negative, and the connection between this hidden neuron and
the output is positive. Therefore, this input has a negative effect on
insulin Kp. However, the fourth input (Kier & Hall index (order 1))
has a dominant positive connection weight with hidden neuron B
and therefore has a positive effect on insulin Kp values. The con-
nection weights of the fifth input (RNCS relative negative charged
SA (SAMNEG*RNCG) [Zefirov’s PC]) are both positive, and there-
fore, the overall effect of this input on the output is positive. For
the other three inputs, however, the direction of the effect on the
outputs cannot be deduced from the magnitudes of the connection
weights alone.
Table 4 lists the descriptors used as inputs in the final optimal
network and their physical interpretation. Henceforth in the dis-
cussion, these descriptors will be referred to as D1, D2, D3, D4, D5
and D6. Table 5 lists the relative importance (RI %) of these descrip-

Fig. 5. Range of percentage deviations observed between experimental and pre-
dicted permeability (Kp) data.
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Table 3
Predictions for the validation set. The resistance reduction factors (RF) and the experimental permeability (Kp) values are included wherever available.

CPE Predicted Kp (10−3, cm/h) Experimental Kp (10−3, cm/h) RF = R0/R6

Resistance set: predicted Kp value must be lower than 2.0
1,2-Dichloropropanea 4.5 – 3.3 ± 0.8
1-Pentene 0.5 – 7.0 ± 2.6
1-Pentyne 0.5 – 3.5 ± 0.3
Azelaic acida 5.0 – 1.2 ± 0.1
Cyclopentane 0.5 – 3.9 ± 0.1
Salicaldehyde 0.5 – 4.8 ± 0.1
Salicylic acid 1.6 – 5.8 ± 0.4
Ethyl acetate 0.6 – 4.3 ± 0.7

Literature set: predicted Kp value must be greater than 2.0
Linoleic acid (6, 55) 4.0 – –
Limonene oxide (19) 5.0 – –
Menthol (19) 4.5 – –
Isopropyl myristate (7) 4.5 – –
Dimethyl acetamidea (7) 0.5 – –
Palmitic acid (55) 5.4 – –
Palmitoleic acid (55) 4.5 – –
Stearic acid (55) 4.0 – –
Linolenic acid (55) 4.2 – –
Limonenea (55) 0.8 – –
Azone (23, 24) 21.8 – –
Dodecyl-l-pyroglutamate (24) 4.6 – –

Excluded set: predicted Kp value must be close to experimental Kp value
2-Methylcyclohexanone 2.3 1.8 ± 0.3 –
3-Methyl-2-hexanone 2.0 1.6 ± 0.4 –
4-Hydroxybenzaldehyde 1.0 1.5 ± 0.2 –

t
c
c
o
i
e
o
a

F
t
a

Acetanilide 0.9
Tertbutylacetic acid 1.8

a Indicates a CPE that has been misclassified by the model.

ors, calculated using Garson’s algorithm. Using the randomized
onnection weight approach described in Section 2.4, the overall
onnection weights and the directions of the effects of the inputs

n the output are determined and tabulated in Table 5. From this,
t is clear that all the inputs except inputs 4 and 5 have a negative
ffect on the output. Fig. 7 presents a bar chart for the magnitudes
f the overall connection weights for all the six descriptors. Table 5
lso lists the results of the leave one descriptor out analysis. Remov-

ig. 6. Neural interpretation diagram (NID) for the optimal neural network. The thicknes
he neurons. Black lines indicate positive weights and grey lines indicate negative weights
nd grey input circles indicate those that have an overall negative effect.
0.9 ± 0.1 –
1.5 ± 0.1 –

ing either of the descriptors D4, D2, or D6 resulted in high %AAD
values when compared to removing D3, D5 or D1.

Table 6 lists the all the connection weights and the overall

connection weights of the optimal network and their statistical
significance values (p-values) calculated using the randomization
procedure described in Section 2.4. From the table, it is evident that
of the 12 input-hidden–output connections, nine connections are
statistically significant, and of the six overall connection weights,

s of the connecting lines is proportional to the magnitude of the weights between
. Black input circles indicate inputs that have an overall positive effect on the output
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Table 4
The descriptors used in the final model and their physical interpretation.

Input Descriptor name Descriptor type Physical interpretation

D1 Average 1-electron reactivity index for a C atom Quantum-chemical Reactivity at the site of C atoms
D2 Minimum 1-electron reactivity index for a O atom Quantum-chemical Reactivity at the site of O atoms
D3 Max atomic orbital electronic population Quantum-chemical Nucleophilicity of the molecule
D4 Kier & Hall index (order 1) Topological Molecular branching
D5 RNCS Relative negative charged SA (SAMNEG*RNCG) [Zefirov’s PC] Electrostatic Nucleophilic portion of the molecule’s surface
D6 Tot dipole of the molecule Quantum-chemical Charge distribution of the molecule

Table 5
The six descriptors in the final neural network, their relative importance (RI %) calculated using Garson’s algorithm, their overall connection weights and directions of effect
calculated using the randomized connection weight approach by Olden and Jackson (2002) and the results from the leave one descriptor out analysis.

Input Descriptor Relative importance (RI %) Overall connection weight Direction of effect Leave one descriptor out analysis

%AAD # of misclassifications

D1 Average 1-electron
reactivity index for a C
atom

4.09 −0.50 Negative 22.9 4

D2 Minimum 1-electron
reactivity index for a O
atom

21.73 −0.58 Negative 29.2 6

D3 Max atomic orbital
electronic population

33.29 −0.18 Negative 21.3 4

D4 Kier & Hall index (order 1) 19.64 2.72 Positive 36.9 5
D5 RNCS Relative negative

charged SA
(SAMNEG*RNCG) [Zefirov’s
PC]

6.05 0.64 Positive 23.3 4

D6 Tot dipole of the molecule 15.20 −1.70

Fig. 7. Comparison of the overall connection weights of all six inputs to the network.

fi
fi
i
t
t

network that has been built after leaving out a descriptor, the
greater is that particular descriptor’s significance. Table 5 sum-
marizes these results for the six networks. As shown, the relative

T
T
a

ve are significant, (i.e. p-values lower than the 0.05) at a 95% con-
dence level. The overall connection weight of D3 was found to be

nsignificant. The NID shown as Fig. 6 can be simplified by removing

he hidden layer and retaining only the significant overall connec-
ion weights. The simplified NID is shown in Fig. 8.

able 6
he statistical significance (P) of the connection weights (WA,i or WB,i) and the overall con
pproach proposed by Olden and Jackson (2002).

Input Descriptor

D1 Average 1-electron reactivity index for a C atom
D2 Minimum 1-electron reactivity index for a O atom
D3 Max atomic orbital electronic population
D4 Kier & Hall index (order 1)
D5 RNCS Relative negative charged SA (SAMNEG*RNCG) [Zefirov’s PC]
D6 Tot dipole of the molecule

a Indicates insignificant connection weights with 95% confidence level.
Negative 28.0 4

4. Discussion

The optimum model identified in this work was a 6-2-1 net-
work, which was able to account for 86% of the variation in the
target property (Fig. 2). The six best descriptors identified by the
algorithm are tabulated in Table 4. Using Garson’s algorithm, the
relative importance of these descriptors was calculated to be in
the following order: D3 > D2 > D4 > D6 > D5 > D1 (Table 5). In con-
trast, the overall connection weights (Table 5) when ordered in
decreasing order of magnitudes gave rise to the following order:
D4 > D6 > D5 > D2 > D1 > D3. Also, the overall connection weight of
Descriptor 3 is insignificant (p = 0.186 > ˛ = 0.05 for 95% confidence
levels) whereas the other overall connection weights are signifi-
cant (p < 0.05) when analyzed using the randomization procedure
described in Section 2.4. Clearly, RI% values calculated using the
Garson’ algorithms are in contradiction with the overall connection
weights and the significance levels calculated using the random-
ization analysis. To clarify the issue, the results from leave one
descriptor out analysis were evaluated. The larger the error in the
order of importance is D4 > D2 > D6 > D5 > D1 > D3. This is similar to
the order calculated using the overall connection weight approach,

nection weights (WA,i + WB,i) in the final network determined using the randomized

Hidden neuron A Hidden neuron B Overall connection weight

WA,i P WB,i P WA,i + WB,i P

0.07a 0.304 −0.57 0.003 −0.50 0.021
−1.52 0.002 0.92 0.002 −0.58 0.013
−2.06 0.001 1.88 0.002 −0.18a 0.186
−0.22a 0.091 2.94 0.001 2.72 0.001

0.47 0.012 0.17a 0.091 0.64 0.012
0.30 0.026 −2.00 0.001 −1.70 0.002
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ig. 8. Simplified neural interpretation diagram (NID) displaying only the significan
espectively.

ith the exception of D2, which was calculated to have a lower
mportance than D6 and D5 (Table 5) using the overall connection

eight approach. From the relative orders of importance calculated
sing the overall connection weight approach and the leave one
escriptor out analysis, it is clear that D4 is the most important
f the descriptors, and D1 and D3 are the least important. This
pparent discrepancy with the RI% values calculated using Gar-
on’s algorithm is attributed to the inability of this algorithm to
onsider the direction of weights. This shortcoming of the Garson’s
lgorithm has been discussed in detail by Olden and Jackson (2002).

The six descriptors, their types and their physical interpreta-
ion are provided in Table 4. D4 (Kier & Hall index (order 1)) is a
onnectivity index that according to Kier and Hall (2000), “encodes
olecular structure in a non-empirical way and does not directly

erive from or translate into any particular physical property.”
hese authors have explained the significance of this property from
he view point of intermolecular accessibility. They have reported
hat atoms with highly branched bonds would have limited access
o their environment and therefore would be involved in inter-

olecular reactions to a lesser degree than atoms that have very
ittle branching at their sites. Therefore, they have suggested that

olecules with a low degree of branching, which corresponds to a
igh value of the first order Kier and Hall connectivity index, would

e most likely to participate in intermolecular reactions. Since, this
escriptor has been identified as significant by the randomized
verall connection weight approach and the leave one descriptor
ut analysis, and the direction of the overall connection weight
rom this descriptor to the output is positive (Table 5), it is reason-
all connection weights, where black and grey indicate positive and negative effects,

able to assume that a molecule with relatively little or no branching
should greatly enhance the permeation of insulin when compared
to molecules that are highly branched.

Since most CPEs enhance drug permeation by disruption of the
lipid bi-layers, a molecule with a low degree of branching would
have its reactive sites well exposed to the bi-layers, and there-
fore it can induce greater disruption of these layers by forming
intermolecular bonds. As opposed to branched molecules which
have reactive sites shielded by neighboring atoms and cannot par-
ticipate sufficiently in chemical reactions. Hrabalek et al. (2005)
have reported significant drug enhancement by 6-aminohexanoic
acid derivatives having a small degree of branching. However, they
have reported that higher order branching leads to a decrease in
enhancement activity. Also, Chantasart et al. (2004) have reported
that branched alkanols have significantly lower enhancer potency
than their straight chain counterparts. Also, since the first order
Kier & Hall index has been used to correlate several physical prop-
erties like boiling point (Hall et al., 1975; Kier and Hall, 1976),
water solubilities (Hall et al., 1975) and also partition coefficients
(Murray et al., 1975), we have tried to correlate this descriptor and
the octanol–water partition coefficients, as calculated using Mar-
vin calculator plug-in by ChemAxon (2007), for all the CPEs in the
training set. 1-dodecyl-2-pyrrolidone exhibited a large deviation

from the linear trend-line and therefore was excluded from the
correlation. The resulting linear correlation between the two prop-
erties is shown in Fig. 9. Therefore, D4 could be considered as an
indicator of the CPE’s ability to transport from the donor solution
to the skin lipids. When the partition coefficients were compared
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that cluster formation is not occurring; however, we do acknowl-
ig. 9. Correlation between the first order Kier & Hall index and the octanol–water
artition coefficient (Log Kow) for the various CPEs.

ith the other five descriptors in the model, poor correlations were
bserved.

D2 relates to the reactivity at the site of oxygen atoms in the
olecule. Since, the direction of the effect of this descriptor is neg-

tive, large negative values of this descriptor lead to better insulin
ermeation. Mathematically, this descriptor is inversely related to
he energy gap between the lowest unoccupied molecular orbital
LUMO) and the highest occupied molecular orbital (HOMO) of the
xygen atom (Katritzky et al., 1994). Therefore, molecules that have
igh values of D2 have smaller HOMO–LUMO energy gaps. From a
uantum-chemical perspective, a small HOMO–LUMO energy gap

ndicates the ability of the molecule to exchange electrons and
herefore, D2 is a measure of the oxygen atoms in the molecule
o participate in chemical reactions. Narishetty and Panchagnula
2004a,b) have performed experimental studies on permeation of
idovudine in the presence of terpenes and suggested that the
xygen atoms in the terpenes form competitive hydrogen bonds
ith ceramide molecules in the skin’s lipid bi-layers. This leads

o the breakup of the compact lamellar network of these bi-layers
nd results in enhancement of Zidovudine permeation. Assuming
similar mechanism in the current work, the insulin permeation

nhancement by molecules with highly reactive oxygen sites can
e explained.

While D1 is similar to D2, it describes the average reactivity of
ll carbon atoms in the molecule. Since the direction of its effect is
lso negative and using a reasoning strategy analogous to that used
or D2, we may suggest that molecules with highly reactive carbon
toms disrupt the skin lipid bi-layers by forming hydrogen bonds
nd therefore enhance insulin permeation.

D5 relates to the surface area of the molecule that is nega-
ively charged. The positive effect of this descriptor implies that a

olecule with a larger negatively charged surface would enhance
nsulin permeation more than a molecule with relatively smaller or
o negatively charged surface. This again conforms to the hydrogen
onding theory proposed in the previous paragraph; greater the
harged surface area of a molecule, greater is its chance of reacting
ith the skin lipid bi-layers to form hydrogen bonds. Therefore,

t appears that not only should a molecule have highly reactive
xygen and carbon sites, but also these sites should be sufficiently
xposed to the lipid bi-layers to facilitate greater reactivity.

D6 describes the total dipole moment of the CPE. The nega-
ive effect of this descriptor on insulin permeability implies that
ood insulin-specific CPEs have low dipoles. It has been reported
y some workers that molecules with large dipoles are not easily
oluble in lipids (Mazzenga and Berner, 1990), and also ionic forms
f a drug fail to permeate through the skin when compared to its

on-ionic form, due to the former’s low solubility in skin lipids
Abraham and Martins, 2004). Therefore, it may be assumed that
molecule with a high dipole moment would fail to partition into

he lipid bi-layers and consequently cannot enhance insulin per-
l of Pharmaceutics 388 (2010) 13–23

meation by disrupting these layers. D3, which again represents the
reactivity of the molecule, was found to be insignificant from the
randomization analysis for the overall connection weight. There-
fore, it is highly likely that this descriptor has no part to play in the
mechanism of insulin enhancement and might have been included
in the model only as a correction factor for mathematical accu-
racy.

From the previous discussion concerning the physical interpre-
tation of the descriptors involved in the model, it is apparent that
the enhancement effect of the CPEs is interplayed among their
structural attributes. On one hand, there are favorable structural
features like the first order Kier & Hall index which describes the
lipid partitioning ability of the molecule and other electronegative
descriptors (reactivity indices of carbon and oxygen atoms and the
negatively charged surface area) that describe the ability of the CPE
to react with the lipid bi-layers of the skin. On the other hand, there
is the total dipole of the molecule, which diminishes the efficacy of a
CPE by decreasing its lipid solubility. Therefore, the design method-
ology for a CPE involves finding structures that account for these
different attributes.

The validation for the best model identified was performed on 25
CPEs belonging to varied functional groups. As can be inferred from
Table 3, the model performed reasonably well in predicting the
permeabilities for new CPEs. However, there were four misclassi-
fied CPEs. 1,2-Dichloropropane and azelaic acid did not significantly
reduce skin resistance and therefore are expected to not disrupt the
skin structure upon exposure. However, the model predicts high
insulin permeability values in their presence. This could possibly be
due to the lack of sufficient diversity in the training set with respect
to this particular group of chemical structures. Also, because of the
relatively small size of the data set employed in the current work,
the number of descriptors in the model was limited to six which
might not account for all the descriptors relevant for describing the
enhancement mechanism. One of the 12 literature CPEs, dimethyl
acetamide has been reported to be an insulin enhancer (Pillai et al.,
2004b). In contrast, the current model predicts no insulin perme-
ation enhancement in its presence. This could possibly be explained
by the fact that in the work by Pillai et al. (2004b), this CPE has been
used at 100% concentration as opposed to the 5% (w/v) solution
of CPE used in the current study. Limonene was the other liter-
ature CPE that has been reported to enhance insulin permeation
in the literature (Rastogi and Singh, 2005), but the model in the
current work classifies it as a non-CPE (Table 3). This CPE needs
to be investigated experimentally in the future to determine if it
enhances insulin permeation using the current experimental set-
up. Although Azone has been classified correctly by the current
model as an insulin-specific enhancer, the predicted permeability
value of approximately 22 cm/h is far greater than the experimen-
tal values observed in the current work. This could be due to the
fact, that the training set for the model did not include any Azone-
like molecules. We seek to improve our model in the future by
including derivatives of Azone. As for the predictions for the five
CPEs belonging to the excluded set, the percentage absolute aver-
age deviation (%AAD) value was 20, which is less than twice the
error on the training set. This proves that the model not only clas-
sifies the new molecules correctly into working and non-working
categories, but also predicts the insulin permeability values with
reasonable errors.

Comparison of the elution times of the insulin standards with
the other HPLC evaluations of insulin permeated does not reveal
any shift in the elution time. This can provide indirect evidence
edge the need for additional biofunctionality and bioavailability
analyses to characterize the insulin during transport through the
skin. This characterization will involve the performance of in vivo
animal testing and is the subject for future research.
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. Conclusions

The results from the current work lead to the following conclu-
ions:

A hybrid algorithm that combines differential evolution algo-
rithms (DE) and artificial neural networks (ANNs) provides a
reasonably good predictive model for insulin permeability in the
presence of CPEs.
Descriptors found to be statistically significant included the
following: average 1-electron reactivity index for a C atom, min-
imum 1-electron reactivity index for a O atom, Kier & Hall index
(order 1), RNCS relative negative charged SA (SAMNEG*RNCG)
[Zefirov’s PC], and total dipole of the molecule.
In general, greater hydrophobicity and reactivity increase a CPE’s
efficacy, and higher dipole moments decrease the efficacy.
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